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Estimating the local curvature of an interface involves the local determination of nor-
mals to the interface, and the rates that they turn along the interface. This is challeng-
ing in volume-of-fluid type methods since the interface between materials is specified
by the relative amount it cuts off from the computational cells that it crosses (also
referred to as volume fraction data) rather than by a discrete set of points lying on
the interface itself. In this work, we generalize the height function method to nonuni-
form rectangular grids. We demonstrate analytically and numerically that—using three
successive (adjacent) integral mean values (or ‘‘column” heights)—interface curvature
can be estimated to second-order accuracy, the first derivative (interface normal) to
third-order accuracy, and the curve location to fourth-order accuracy—each at its own
special points. We also show that there are special points where the curvature can be
estimated to fourth-order accuracy when using five successive mean values instead.

Underlying all this is a result about the accuracy of the jth-derivative of the kth-
degree polynomial that interpolates a function F at kþ 1 stencil points placed irregu-
larly in an interval of width h. Namely, for all smooth enough functions F and for k fixed
and h getting small, there are kþ 1� j special points in the interval at which the error
in the jth derivative is of order Oðhkþ2�jÞ. (This is one order higher than the usual
Oðhkþ1�jÞ error holding over the whole interval for that derivative.) The special points
in the interval are the kþ 1� j (real) zeroes of certain F-independent polynomials, of
degree kþ 1� j, with coefficients depending on the interval’s stencil points.

In our case, let FðxÞ be an indefinite integral of the unknown interfacial curve f ðxÞ.
Then FðxiÞ at kþ 1 successive stencil points xi is calculated using cumulative sums of
the k successive integral mean values of f, weighted by the successive interval sizes.
The kþ 1 points ðxi; FðxiÞÞ are now interpolated by a kth degree polynomial ðPFÞðxÞ.
It’s first derivative ðPFÞð1Þ approximates the unknown curve f; while ðPFÞð2Þ and ðPFÞð3Þ,
respectively, approximate f ð1Þ and f ð2Þ . Thus, the results above using three successive
mean values correspond to k ¼ 3 and j ¼ 3;2;1. The curvature result using five succes-
sive mean values correspond to k ¼ 5 and j ¼ 3. For this last case, since the curvature
j ¼ f ð2Þ=ð1þ ðf ð1ÞÞ2Þ3=2, we use the facts that f ð1Þ ¼ Fð2Þ ¼ ðPFÞð2Þ þ Oðh4Þ on the whole
stencil interval, not just at the three special points having Oðh4Þ accuracy for f ð2Þ.
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1. Introduction

In volume-of-fluid methods the interface between regions is specified by the relative amount the interface cuts off from
the computational cells that it crosses, rather than by a discrete set of points lying on the interface itself. But estimating the
local curvature of an interface involves the local determination of normals to the interface, and the rates that they turn along
the interface. This might seem problematic using such locally smeared information as fractional amounts cut off from inter-
facial cells. Nevertheless, for a two-dimensional uniform grid of square mesh cells with corners ðxi; yj Þ

m
i¼1

n
j¼1, one may first

choose a local vertical direction (say, the increasing y direction) from the four possibilities available (x or y—increasing or
decreasing). Then, one may define a local height for the interface in each of three neighboring ‘‘vertical” columns of
cells—columns associated with, say,
xi 6 x 6 xiþ1; xiþ1 6 x 6 xiþ2; and xiþ2 6 x 6 xiþ3
by summing all partial areas in a column below the interface but above a horizontal floor common to the three intervals.
Dividing by the column width, this succeeds in defining a local piecewise-constant interfacial ‘‘height function” for the
interface:
HðxÞ ¼ Hiþ1=2; xi 6 x < xiþ1; i ¼ 2; . . . ;N � 1: ð1Þ
The two derivatives in the relevant expression for the local curvature of the interface, namely,
j :¼ d2y=dx2

½1þ ðdy=dxÞ2�3=2 ð2Þ
are now estimated by applying centered difference formulas to the related discrete function
ðxmþ1=2;Hmþ1=2Þ; xmþ1=2 :¼ ðxm þ xmþ1Þ=2; m ¼ i; iþ 1; iþ 2: ð3Þ
The estimate is demonstrably second-order accurate at the mid-point of the intersection of the interface with the middle
column, see e.g. Cummins et al. [3].

The ‘‘height function” method [15,7] has mainly been used on uniform rectangular meshes. For such grids, it has been
demonstrated to yield second-order accuracy using three successive heights Hiþ1=2 (or columns) for both interface curvatures
[13,10,3,5] and interface normals [4]. The method has also been extended to compute fourth-order accurate curvature using
five successive heights Hiþ1=2 (or columns) [14]. Recent studies on the height function method have focused on improving the
estimation of the height function itself by choosing the best local rectangular set of mesh squares [16,8,1,12]. The focus of
this note is not on the choice of the optimum set of mesh squares for estimating the height function.

Instead, this note focuses on showing, both analytically and numerically, that given (integral) mean values (or column
heights) associated with three adjacent columns of a nonuniform grid, we can compute second-order accurate curvature
associated with the average location of the four successive grid points. For the case of a uniform grid this four-point average
location is the location of the mid-point of the middle interval. We also find locations in each stencil interval where third-
order accurate approximate first derivatives, and fourth-order accurate points on the curve, can be (and are) calculated. Fi-
nally, we extend a recent fourth-order accurate curvature result of Sussman and Ohta [14], based on five adjacent uniform
columns, to nonuniform rectangular grids.

2. Nonuniform rectangular grids

This note extends the height function result to nonuniform‘‘tensor product” grids; that is to say, to grids of mesh points
ðxi; yjÞ
m n
i¼1 j¼1; x0 < x1 < � � � < xm; y0 < y1 < � � � < yn
that are not necessarily uniformly spaced (see Fig. 1). The result is more clearly stated and analyzed in terms of the single-
valued function ðx; f ðxÞÞ, presumed to describe the interface locally, along with f’s integral mean values
�f iþ1=2 :¼
R xiþ1

xi
f ðtÞdt

ðxiþ1 � xiÞ
: ð4Þ
The sequence �f is the present analog of the ‘‘height function”, and is presumed to be known data.
We now suppose that the (unknown) interfacial curve ðx; f ðxÞÞ crosses four successive vertical mesh lines x ¼ xi; . . . ;

x ¼ xiþ3. Let now FðxÞ be an indefinite integral of the interfacial curve function f ðxÞ. Then
dF
dx

� �
ðxÞ ¼ f ðxÞ; and

DF
Dx

� �
iþ1=2

:¼ ½Fðxiþ1Þ � FðxiÞ�
ðxiþ1 � xiÞ

¼ �f iþ1=2 ð5Þ
are the (unknown) derivative and the (known) first difference quotient of F, respectively. More important for curvature esti-
mates of the curve are the (unknown) second and third derivatives of F and its (known) second and third difference
quotients:



Fig. 1. Illustration of nonuniform ‘‘tensor product” grid.
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d2F

dx2 ¼
df
dx

and
D2F
Dx2

 !
iþ1

¼
�f iþ3=2 � �f iþ1=2
� �
½ðxiþ2 � xiÞ=2� ð6Þ
together with
d3F

dx3 ¼
d2f

dx2 and
D3F
Dx3

 !
iþ3=2

:¼
D2F
Dx2

� �
iþ2
� D2F

Dx2

� �
iþ1

� �
½ðxiþ3 � xiÞ=3� : ð7Þ
(Just as the second difference quotient is the value of the second derivative of the quadratic interpolant of three successive
points ðxk; FkÞiþ2

k¼i , the third difference quotient is the value of the third derivative of the cubic polynomial interpolating the
four points ðxk; FkÞiþ3

k¼i .)
Let the width of the stencil be called
h :¼ xiþ3 � xi; ð8Þ
it is presumed to be getting small (so that adjacent mesh points are getting close together). It is a fact that, while the third
difference quotient of F approximates the third derivative of F to within first-order OðhÞ accuracy when one is within OðhÞ of
the interval ½xi; xiþ3�, it approximates it to within second-order Oðh2Þ accuracy near one special point; namely, within Oðh2Þ of
the average location
�xð4Þiþ3=2 :¼ ðxi þ � � � þ xiþ3Þ
4

ð9Þ
of the four points in the difference stencil. For details, see the Remark in the next section. �xð4Þiþ3=2 is informally called a ‘‘four-
point average”.

In summary so far: we have an Oðh2Þ accurate estimate of ðd2f=dx2Þð�xð4Þiþ3=2Þ using as data three successive means �f iþ1=2 of f

(namely, �f iþ1=2;
�f iþ3=2, and �f iþ5=2Þ, i.e., three successive column-sums of (area-weighted) area fractions under the curve. For the

curvature j at �xð4Þiþ3=2 we also need to estimate the value of df=dx ¼ d2F=dx2 at �xð4Þiþ3=2. We require Oðh2Þ accuracy, using these
same three successive means �f iþ1=2.

Towards this end: from the Remark, but for the three-point stencil ðxi; xiþ1; xiþ2Þ, the second difference quotient Eq. (6) is a
second-order accurate estimate for d2F=dx2 at the three-point average location
�xð3Þiþ1 :¼ ðxi þ xiþ1 þ xiþ2Þ
3

ð10Þ
of its three associated stencil points. So, we estimate the needed value of df=dx ¼ d2F=dx2 (and, with it, the curvature
j ¼ jðxÞ of f) at the required four-point average x ¼ �xð4Þiþ3=2 by linearly interpolating the two points
�xð3Þiþ1;
D2F
Dx2

 !
iþ1

 !
and �xð3Þiþ2;

D2F
Dx2

 !
iþ2

 !
ð11Þ
to that intermediate point x ¼ �xð4Þiþ3=2. Note that, indeed, �xð3Þiþ1 < �xð4Þiþ3=2 < �xð3Þiþ2. See, for example, Fig. 2.
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Fig. 2. Illustration of the position of four mesh points xi; xiþ1; xiþ2; xiþ3, the three associated mean values �f iþ1=2;
�f iþ3=2;

�f iþ5=2, and the associated three-point
average and four-point average locations �xð3Þiþ1; �x

ð3Þ
iþ2; �x

ð4Þ
iþ3=2 of the mesh points.
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Finally: a continuous, Oðh2Þ accurate function approximating the curvature jðxÞ along the curve is attained by:

(1) Defining a continuous piecewise-linear approximate curvature function by linear interpolation of the above approx-
imate curvatures between successive four-point averages ðxi þ � � � þ xiþ3Þ=4 and ðxiþ1 þ � � � þ xiþ4Þ=4; or, alternatively,

(2a) Defining a continuous piecewise-linear approximate second-derivative f 00approx by linear interpolation of D3F=Dx3

between successive four-point averages ðxi þ � � � þ xiþ3Þ=4 and ðxiþ1 þ � � � þ xiþ4Þ=4, and
(2b) Defining a continuous piecewise-linear approximate first-derivative f 0approx by linear interpolation of D2F=Dx2 between

successive three-point averages ðxi þ � � � þ xiþ2Þ=3 and ðxiþ1 þ � � � þ xiþ3Þ=3.
(2c) The resulting continuous approximate curvature function
japprox :¼
f 00approx

½1þ ðf 0approxÞ
2�3=2 ð12Þ
has frequent jumps in its slope, since the three-point stencil averages and the four-point stencil averages interlace each
other. A possible change in ‘‘floors” (Section 1) from one four-point stencil to the next would not affect continuity or accu-
racy, as the two quantities entering japprox are difference quotients of �f . But, a change in the ‘‘vertical” direction would be a
different matter.

Note that approach (1) was taken in [5] in order to compute curvature at cell faces on a uniform square grid when the
curvature was defined in two adjacent cells.

3. Where are the derivatives of polynomial interpolants especially accurate ?

For completeness we now sketch a proof of the Remark below; see Kreiss et al. [9, p. 38]. For application of the Remark to
three-point curvature estimates for plane curves, see Mjolsness and Swartz [11, p. 219; and, esp., Section 4 there].

Suppose k P 1 is fixed. Given kþ 1 distinct stencil points ðtiÞki¼0 in increasing order, the kth-order difference quotient
Dkg=Dtk of a function gðtÞ is defined as the (constant value of the) kth derivative of the kth-degree polynomial that matches
g at the stencil points. (Recall here that Dkg=Dtk is k! times the kth-order divided difference of g.) Close to the stencil, the num-
ber Dkg=Dtk approximates dkg=dtk to within first-order, OðhÞ, in the width h of the stencil if dkþ1g=dtkþ1 is continuous. But there
is one point inside the stencil interval at which accuracy can be second-order, i.e., Oðh2Þ as the stencil width h gets small:

Remark. The kth difference quotient is centered at the average location
�tðkþ1Þ
k=2 :¼ ðt0 þ t1 þ � � � þ tkÞ

ðkþ 1Þ ð13Þ
of its stencil points ðtiÞk0 in the following sense: Suppose dkþ2g=dtkþ2 is bounded, then
Dkg
Dtk
¼ dkg

dtk

 !
�tðkþ1Þ

k=2

� �
þ Oðh2Þ: ð14Þ
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To see this, let Pg be the kth degree polynomial interpolant of g at the ðtiÞki¼0, and let
eðtÞ :¼ ðg � PgÞðtÞ: ð15Þ
Suppose dkg=dtk is smooth (e.g. Lipschitz continuous). Rolle’s Theorem says that there is a zero of de=dt strictly between any
two zeroes of e; so the k zeroes of de=dt interlace the kþ 1 zeroes of e. Applying this successively to e, to de=dt, . . ., and to
dk�1e=dtk�1, there exists one zero zk for dke=dtk strictly between t0 and tk. Since dke=dtk is smooth, dke=dtk is OðhÞ in size when
one is within OðhÞ of zk; e.g. in the interval ½t0; tk�. But we cannot locate zk more precisely without assumption of additional
smoothness.

Suppose, now, that gðtÞ ¼ tkþ1=ðkþ 1Þ!. Then the ðkþ 1Þth degree polynomial e ¼ g � Pg, vanishing as it does at the kþ 1
stencil points, must be
eðtÞ ¼ ðt � t0Þðt � t1Þ . . . ðt � tkÞ
ðkþ 1Þ! ¼

tkþ1 � ðt0 þ � � � þ tkÞtk þ � � � þ ð�1Þkþ1t0t1 . . . tk

h i
ðkþ 1Þ! : ð16Þ
(The coefficients here involve the elementary symmetric polynomials—or, functions—in the kþ 1 variables t0; . . . ; tk. See, for
example, the web article ‘‘Symmetric Polynomial”, esp. Eqs. (7)–(17) there, in Wolfram MathWorld [17].) Consequently,
dke

dtk

 !
ðtÞ ¼ dkðg � PgÞ

dtk

 !
ðtÞ ¼ dkg

dtk

 !
ðtÞ � Dkg

Dtk

 !
¼ t � ðt0 þ � � � þ tkÞ

ðkþ 1Þ ð17Þ
is linear, OðhÞ on ½t0; tk�, and vanishes when t ¼ �tðkþ1Þ
k=2 . The same is true if g is a polynomial of the form qðtÞ þ tkþ1=ðkþ 1Þ!; q a

polynomial of degree k. For then Pq ¼ q, and thus Eqs. (16) and (17) still hold true.
Returning to more general g, and without loss of generality, assume the origin t ¼ 0 is placed at the ðkþ 1Þ-point average

�tðkþ1Þ
k=2 . We have supposed that dkþ1g=dtkþ1 is smooth, so that g has Maclaurin expansions
ðMmgÞðtÞ ¼
Xm

j¼0

ðdjg=dtjÞð0Þtj=j! ð18Þ
of all degrees m 6 kþ 1. Then,
gðtÞ ¼ ðMkþ1g þ Rkþ1gÞðtÞ ¼ ðMkgÞðtÞ þ dkþ1g

dtkþ1

 !
ð0Þ � tkþ1

ðkþ 1Þ!þ ðRkþ1gÞðtÞ; ð19Þ
where Rkþ1g, the remainder in Maclaurin approximation of degree kþ 1, has various exact representations. As
Dkð�Þ=Dtkð¼ dkðPð�ÞÞ=dtkÞ acts linearly, we conclude from Eq. (19) that
Dkg
Dtk
¼ dkðPMkgÞ

dtk
þ dkþ1g

dtkþ1

 !
ð0Þ �

dk P tkþ1

ðkþ1Þ!

h i� �
dtk

þ dkðPRkþ1gÞ
dtk

: ð20Þ
Since PðMkÞ ¼ Mk, the first term in the right side of Eq. (20) is ðdkg=dtkÞð0Þ. For the second term: take t ¼ 0 in Eq. (17), so that
we now have Dk½tkþ1=ðkþ 1Þ!�=Dtk ¼ �tðkþ1Þ

k=2 (=0 by assumption) . Thus,
Dkg
Dtk
¼ dkg

dtk

 !
ð0Þ þ dkþ1g

dtkþ1

 !
ð0Þ � 0þ dkðPRkþ1gÞ

dtk
: ð21Þ
Since Rkþ1g is Oðhkþ2Þ, the last term is Oðhkþ2�kÞ ¼ Oðh2Þ. So, the Remark is valid. (Indeed, because the degree k is fixed, the
Remark is true as h ¼ tk � t0 goes to zero independent of the relative locations of t1; . . . ; tk�1 in the mesh interval ðt0; tkÞ.)

Now, let us restate the Remark as follows:

Reworded remark. For a sufficiently smooth function gðtÞ, let ðPgÞðtÞ be its kth degree polynomial interpolant at the kþ 1
points t0 < t1 < � � � < tk. Then if k P 1, the constant function dkðPgÞ=dtk is a first-order accurate approximation to dkðgÞ=dtk

on the interval ½t0; tk�; but it is second-order accurate at the point t ¼ �tðkþ1Þ
k=2 Eq. (13).

To this we now add: If k P 2, the linear function dk�1ðPgÞ=dtk�1 is a second-order accurate approximation to dk�1g=dtk�1

on ½t0; tk�; and there are two points in ½t0; tk�, symmetric about �tðkþ1Þ
k=2 , at which it is third-order accurate. Moreover, if k P 3,

then the quadratic function dk�2ðPgÞ=dtk�2 is a third-order accurate approximation to dk�2g=dtk�2; and there are three points
in ½t0; tk� at which it is fourth-order accurate.

More specifically, the two points where the linear approximate derivative is third-order accurate are the two roots of the
quadratic dk�1e=dtk�1, where eðtÞ (Eq. 16) is the relevant interpolation error. If the origin is placed at the mean value �tðkþ1Þ

k=2 (so
that the mean value of the kþ 1 points ðtiÞk0 is now 0), then these two points yielding special accuracy (assuming �tðkþ1Þ

k=2 ¼ 0Þ are
~t� :¼ � t2
0 þ t2

1 þ � � � þ t2
k

� �
=ðkðkþ 1ÞÞ

� 	1=2
: ð22Þ
In the same way, the three points yielding fourth-order accuracy when evaluating the quadratic approximate derivative
dk�2ðPgÞ=dtk�2 are the three roots of the cubic dk�2e=dtk�2, with eðtÞ Eq. (16) again the relevant interpolation error. We
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pointed out earlier, using successive applications of Rolle’s theorem, that these three roots were real. Locating the kþ 1 sten-
cil points relative to their average �tðkþ1Þ

k=2 , so that, again, �tðkþ1Þ
k=2 ¼ 0, the cubic is in its ‘‘normal form” t3 þ at þ b. Then, its three

roots have well-known closed-form elementary expressions involving the coefficients
a ¼ 6ðt0ðt1 þ � � � þ tkÞ þ t1ðt2 þ � � � þ tkÞ þ � � � þ tk�1tkÞ=ðkðkþ 1ÞÞ ð23Þ

and
b ¼ �6ðt0t1ðt2 þ � � � þ tkÞ þ ðt0 þ t1Þt2ðt3 þ � � � þ tkÞ þ � � � þ ðt0 þ � � � þ tk�2Þtk�1tkÞ=ððk� 1Þkðkþ 1ÞÞ ð24Þ

of the cubic’s linear and constant terms. Cf. Ref. [2, pp. 7–9]; or formulas (70)–(73) in the web article ‘‘Cubic Formula” in
Wolfram MathWorld [17].

More generally, the m 6 k points yielding ðmþ 1Þth-order accuracy—for the value of the ðm� 1Þth degree approximate
derivative dkþ1�mðPgÞ=dtkþ1�m—are the m roots of the mth degree polynomial dkþ1�me=dtkþ1�m, with eðtÞ Eq. (16) again the rel-
evant interpolation error. As before, the m roots are all real. But for m P 5, there are no explicit formulae for them.

Appendix A provides justification for the special accuracies associated with the special points.
These locations of one, two, and three points of special accuracy for the highest, next-to-highest, and next-to-next-to-

highest derivative of the kth degree polynomial interpolant, respectively, seem to be an especially accurate fixation—as
the width h of the stencil gets small (and with k fixed)—of the zeroes of the corresponding derivatives of the interpolation
error—zeroes whose existence proved so useful in Cauchy’s analysis via Rolle’s Theorem of the error in polynomial interpo-
lation (as mentioned in Ref. [6, pp. 79–80]).

Finally, it is tempting to think that one could start with (Cauchy’s) error formula for polynomial interpolation ðPkÞg of
degree k of a function g:
egðxÞ :¼ ðg � PkgÞðxÞ ¼ gðkþ1ÞðnðxÞÞ
ðkþ 1Þ!

Yk

i¼0

ðx� xiÞ ð25Þ
and differentiate it once to find the error in the first derivative. The first resulting term is an Oðhkþ1Þ term, and one can choose
special values x such that the second term is zero. And so forth, for the errors in the second, third, etc. derivatives.

But, for our approach to curvature (where k ¼ 3), we would need that the derivatives with respect to x of order up to three,
of both gð4ÞðxÞ and nðxÞ be bounded over the h-size interval of interest. But the properties of the derivatives of n, in particular,
are rarely discussed. For example, gð5Þ could be only continuous. Why, then, should n have three derivatives on ½x0; xk�? Indeed,
why any derivatives? After all, according to [6, pp. 80–81], n, for each fixed x, is a solution t ¼ n of the equation
0 ¼ gð4ÞðtÞ � ðkþ 1Þ! egðxÞQk
0ðx� xiÞ

: ð26Þ
Another problem is the additional smoothness requirement on g. In general, gð4Þ is only continuous; in our proof (Appendix
A) its derivative is also continuous. But, we do not need seven derivatives for g.

4. Numerical results

In this section, we demonstrate numerically that our curvature approximation is second-order accurate, our first deriv-
ative approximation is third-order accurate, and our function approximation is fourth-order accurate, each at their respec-
tive special points.
Fig. 3. Plot of the cosine function for the present numerical test cases.
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For our numerical test cases, we consider the following cosine function:
f ðxÞ ¼ A� cos
2px

L
þ p

3

� �
; ð27Þ
with A ¼ 3 and L ¼ 8. This function is close to the one in Cummins et al. [3] but it has a phase shift of p=3 to avoid any pos-
sible symmetry with respect to our mesh stencils. The function is plotted in Fig. 3.

We consider four test cases of a stencil of four mesh points x1; x2; x3; x4. Each case distributes the points differently within
the stencil but all have same mean �xð4Þ5=2 ¼ 0. Each test case is defined by its initial stencil width h (Eq. 8) and its successive
mesh ratios R1 and R2,
R1 ¼
x2 � x1

x3 � x2
and R2 ¼

x3 � x2

x4 � x3
: ð28Þ
Specifically, these cases are:

(1) h ¼ 1:5; R1 ¼ R2 ¼ 1 a uniform mesh,
(2) h ¼ 1:5; R1 ¼ R2 ¼ 0:9 a nonuniform expanding mesh,
(3) h ¼ 1:5; R1 ¼ 0:1; R2 ¼ 10 a nonuniform mesh symmetric with respect to the mean value and
(4) h ¼ 1:5; R1 ¼ 0:3; R2 ¼ 0:7 a nonuniform mesh.
Fig. 4. Plots of the stencil points for the four test cases for the curvature error at the special point �xð4Þ5=2 ¼ 0 (the four-point average).



Table 1
Error in curvature at the special point �xð4Þ5=2 ¼ 0 (the four-point average of the stencil points). The meshes are shown in Fig. 4.

Width Special point Error Order

1. R1 ¼ R2 ¼ 1
h 0.0 1.87E�03 –
h=2 0.0 4.83E�04 1.95
h=4 0.0 1.22E�04 1.99
h=8 0.0 3.05E�05 2.00

2. R1 ¼ R2 ¼ 0:9
h 0.0 1.92E�03 –
h=2 0.0 4.90E�04 1.97
h=4 0.0 1.23E�04 1.99
h=8 0.0 3.07E�05 2.00

3. R1 ¼ 0:1;R2 ¼ 10
h 0.0 2.79E�03 –
h=2 0.0 7.33E�04 1.93
h=4 0.0 1.86E�04 1.98
h=8 0.0 4.65E�05 2.00

4. R1 ¼ 0:3;R2 ¼ 0:7
h 0.0 2.34E�03 –
h=2 0.0 5.67E�04 2.04
h=4 0.0 1.38E�04 2.04
h=8 0.0 3.41E�05 2.02

Table 2
Error in first derivative at the left special point.

Width Special point Error Order

1. R1 ¼ R2 ¼ 1
h �3.23E�01 9.78E�04 –
h=2 �3.23E�01 1.37E�04 2.87
h=4 �3.23E�01 1.79E�05 2.90
h=8 �3.23E�01 2.29E�06 2.97

2. R1 ¼ R2 ¼ 0:9
h �3.23E�01 8.80E�04 –
h=2 �3.23E�01 1.23E�04 2.84
h=4 �3.23E�01 1.62E�05 2.93
h=8 �3.23E�01 2.07E�06 2.97

3. R1 ¼ 0:1;R2 ¼ 10
h �3.99E�01 1.80E�03 –
h=2 �3.99E�01 2.64E�04 2.77
h=4 �3.99E�01 3.52E�05 2.91
h=8 �3.99E�01 4.53E�06 2.96

4. R1 ¼ 0:3;R2 ¼ 0:7
h �3.38E�01 5.62E�04 –
h=2 �3.38E�01 8.02E�05 2.81
h=4 �3.38E�01 1.06E�05 2.92
h=8 �3.38E�01 1.36E�06 2.96
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To perform the convergence study, we mimic refining the mesh by dividing the stencil width h by two while keeping the
same relative location of the four mesh points. This is illustrated in Fig. 4 for each test case, and all stencils illustrated there
have the same mean point �xð4Þ5=2 ¼ 0.

The error E is calculated at a point that is fixed as the mesh refines,
E ¼ j/� /exactj; ð29Þ
where / represent either the curvature
jexact ¼
�yxx

ð1þ y2
x Þ

3=2 ð30Þ
at �xð4Þ5=2, or (later) the first derivative or the function at another appropriate fixed point.



Table 3
Error in function at the middle special point.

Width Special point Error Order

1. R1 ¼ R2 ¼ 1
h 0.0 5.52E�05 –
h=2 0.0 3.48E�06 3.99
h=4 0.0 2.18E�07 4.00
h=8 0.0 1.36E�08 4.00

2. R1 ¼ R2 ¼ 0:9
h �2.11E�02 5.51E�05 –
h=2 �2.11E�02 3.50E�06 3.98
h=4 �2.11E�02 2.20E�07 3.99
h=8 �2.11E�02 1.38E�08 4.00

3. R1 ¼ 0:1;R2 ¼ 10
h 0.0 3.44E�04 –
h=2 0.0 2.17E�05 3.99
h=4 0.0 1.36E�06 4.00
h=8 0.0 8.50E�08 4.00

4. R1 ¼ 0:3;R2 ¼ 0:7
h �1.14E�01 5.98E�05 –
h=2 �1.14E�01 3.94E�06 3.92
h=4 �1.14E�01 2.52E�07 3.97
h=8 �1.14E�01 1.60E�08 3.98

Table 4
Error in curvature at a fixed point that is not the special point.

Width Fixed point Error Order

1. R1 ¼ R2 ¼ 1
h �3.23E�01 8.66E�02 –
h=2 �3.23E�01 4.05E�02 1.10
h=4 �3.23E�01 1.94E�02 1.06
h=8 �3.23E�01 9.48E�03 1.03

2. R1 ¼ R2 ¼ 0:9
h �3.23E�01 8.66E�02 –
h=2 �3.23E�01 4.05E�02 1.10
h=4 �3.23E�01 1.94E�02 1.06
h=8 �3.23E�01 9.49E�03 1.03

3. R1 ¼ 0:1;R2 ¼ 10
h �3.99E�01 1.10E�01 –
h=2 �3.99E�01 5.06E�02 1.12
h=4 �3.99E�01 2.39E�02 1.08
h=8 �3.99E�01 1.17E�02 1.03

4. R1 ¼ 0:3;R2 ¼ 0:7
h �3.38E�01 9.10E�02 –
h=2 �3.38E�01 4.25E�02 1.10
h=4 �3.38E�01 2.03E�02 1.06
h=8 �3.38E�01 9.92E�03 1.03

M.M. Francois, B.K. Swartz / Journal of Computational Physics 229 (2010) 527–540 535
The three mean values �f iþ1=2 (Eq. 4), i.e. the height functions Hiþ1=2 (Eq. 1), are computed analytically by integrating Eq.
(27) the cosine function. We use exact mean values to avoid the effect of such additional errors as those associated with
numerical quadratures, or the inadequate choice of floors and ceilings. With these exact mean values, we compute the sec-
ond and third difference quotients (Eqs. (6) and (7)), in order to compute the approximate curvature at the mean point �xð4Þ5=2

(the four-point average) by following the steps described in Section 2. The results of the error in curvature at that mean point
are given in Table 1. These results show that the curvature is second-order accurate at the mean point �xð4Þ5=2 as expected.

The other two cases of testing convergence rates at a special point (relative to a stencil as it shrinks in size) are handled as
follows. The special point is located at t�, say, in the largest, h-size stencil interval. The stencil is then shrunk (say to width
h=2) and then moved so that the location of the image of the special point in the shrunken stencil coincides with the location
of t� in the h-sized stencil. Now, the homogeneity associated with a scale change t  Ct, applied to both t and the four ti, is of
degree 1, 2, and 3 in the linear, quadratic, and cubic cases, respectively. Consequently, the image of the special point in the



Table 5
Error in first derivative at a fixed point that is not a special point.

Width Fixed point Error Order

1. R1 ¼ R2 ¼ 1
h 0.0 2.16E�02 –
h=2 0.0 5.45E�03 1.99
h=4 0.0 1.36E�03 2.00
h=8 0.0 3.41E�04 2.00

2. R1 ¼ R2 ¼ 0:9
h 0.0 2.17E�02 –
h=2 0.0 5.47E�03 1.99
h=4 0.0 1.37E�03 2.00
h=8 0.0 3.42E�04 2.00

3. R1 ¼ 0:1;R2 ¼ 10
h 0.0 3.28E�02 –
h=2 0.0 8.30E�03 1.98
h=4 0.0 2.08E�03 2.00
h=8 0.0 5.21E�04 2.00

4. R1 ¼ 0:3;R2 ¼ 0:7
h 0.0 2.41E�02 –
h=2 0.0 6.04E�04 2.00
h=4 0.0 1.51E�03 2.00
h=8 0.0 3.76E�04 2.01

Table 6
Error in function at a fixed point that is a special point for symmetric stencils (Cases 1 and 3) and that is not a special point for unsymmetric stencils (Cases 2
and 4).

Width Fixed point Error Order

1. R1 ¼ R2 ¼ 1
h 0.0 5.52E�05 –
h=2 0.0 3.48E�06 3.99
h=4 0.0 2.18E�07 4.00
h=8 0.0 1.36E�08 4.00

2. R1 ¼ R2 ¼ 0:9
h 0.0 4.00E�04 –
h=2 0.0 5.39E�05 2.89
h=4 0.0 6.97E�06 2.95
h=8 0.0 8.85E�07 2.98

3. R1 ¼ 0:1;R2 ¼ 10
h 0.0 3.44E�04 –
h=2 0.0 2.17E�05 3.99
h=4 0.0 1.36E�06 4.00
h=8 0.0 8.50E�08 4.00

4. R1 ¼ 0:3;R2 ¼ 0:7
h 0.0 2.56E�03 –
h=2 0.0 3.26E�04 2.97
h=4 0.0 4.11E�05 2.99
h=8 0.0 5.15E�06 3.00
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shrunken stencil is a special point with respect to the points in that smaller stencil. Moreover, it remains at the same fixed
location with respect to the domain of the cosine function that comprises our test function.

We compute the approximate first derivative and approximate function at their special points, which are determined for
the h-size stencil following the Remarks of Section 3 for k ¼ 3. The approximate derivative is the linear function that inter-
polates the two successive second difference quotients D2F=Dt2. But, the approximate function, being the derivative of a cu-
bic, is the quadratic function whose integral means are the three prescribed (integral) mean values �f iþ1=2. That is, the
coefficients of the quadratic c3x2 þ c2xþ c1 are found by solving the following system of three equations for m ¼ i; iþ 1; iþ 2:
�f mþ1=2ðxmþ1 � xmÞ ¼ c3
ðx3

mþ1 � x3
mÞ

3
þ c2

ðx2
mþ1 � x2

mÞ
2

þ c1ðxmþ1 � xmÞ: ð31Þ



Table 7
Error in curvature, first derivative, and function at a fixed point ðx ¼ 0:02Þ that is not a special point.

Width Curvature Order First derivative Order Function Order

1. R1 ¼ R2 ¼ 1
h 6.60E�03 – 2.16E�02 – 3.77E�04 –
h=2 2.85E�03 1.21 5.47E�03 1.98 5.13E�05 2.88
h=4 1.31E�03 1.13 1.37E�03 2.00 6.65E�06 2.95
h=8 6.23E�04 1.07 3.43E�04 2.00 8.46E�07 2.98

2. R1 ¼ R2 ¼ 0:9
h 6.66E�03 – 2.17E�02 – 8.35E�04 –
h=2 2.86E�03 1.22 5.48E�03 1.99 1.09E�04 2.94
h=4 1.31E�03 1.13 1.37E�03 2.00 1.39E�05 2.97
h=8 6.23E�04 1.07 3.44E�04 2.00 1.75E�06 2.99

3. R1 ¼ 0:1;R2 ¼ 10
h 7.54E�03 – 3.29E�02 – 3.14E�04 –
h=2 3.10E�03 1.28 8.34E�03 1.98 6.20E�05 2.34
h=4 1.37E�03 1.18 2.09E�03 1.99 9.14E�06 2.76
h=8 6.39E�04 1.10 5.24E�04 2.00 1.23E�06 2.90

4. R1 ¼ 0:3;R2 ¼ 0:7
h 7.07E�03 – 2.42E�02 – 3.04E�03 –
h=2 2.93E�03 1.27 6.06E�03 2.00 3.88E�04 2.97
h=4 1.32E�03 1.15 1.51E�03 2.00 4.89E�05 2.99
h=8 6.27E�04 1.08 3.78E�04 2.00 6.13E�06 3.00

Fig. 5. Plot of the cosine function on a 32 point cosine-graded mesh.
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The errors in the first derivative at one of the two special points are shown in Table 2, and the errors in the approximate
function at the middle special point are shown in Table 3. As expected, the first derivative is third-order accurate at its spe-
cial point, and the approximate function is fourth-order accurate at its special point. To check our calculations, we have esti-
mated the curvature by differentiating the approximate quadratic function and found the results to match the ones obtained
if curvature were computed using the difference quotients. This verification checks the coefficients of the quadratic function.

Finally, we estimate the curvature, first derivative and approximate function at a fixed point that is different from a spe-
cial point, and investigate the errors at this fixed point. For curvature, we estimate the error at the fixed point that is the left
special point for the first derivative, and for the first derivative and approximate function we use the curvature special point
as the fixed point. The results are shown in Tables 4–6 for the curvature, first derivative and approximate function, respec-
tively. As expected, at a fixed point that is different from their respective special points, the curvature is first-order accurate,
the first derivative is second-order accurate and the approximate function is third-order accurate. Note that the fixed point
for the approximate function for Cases 1 and 3 (the special point for curvature) is also the middle special point for the
approximate function since those two stencils are symmetric. In Table 7, we show results for the error in curvature, first
derivative and function at an arbitrary fixed point x ¼ 0:02. Again, the curvature is found first-order accurate, the first



Table 8
Norms of curvature errors for the cosine function when the curvature is linearly interpolated from the four-point averages to the mesh points of uniform and
cosine-graded meshes.

Number of points L1 Order L2 Order L1 Order

Uniform mesh
32 3.43E�03 – 4.84E�03 – 1.10E�02 –
64 8.41E�04 2.03 1.20E�03 2.01 2.83E�03 1.96
128 2.08E�04 2.02 2.97E�04 2.01 7.13E�04 1.99
256 5.19E�05 2.00 7.40E�05 2.00 1.79E�04 1.99

Cosine-graded mesh
32 2.71E�03 – 3.00E�03 – 4.39E�03 –
64 7.39E�04 1.88 8.46E�04 1.82 1.31E�03 1.74
128 1.98E�04 1.90 2.22E�04 1.93 3.47E�04 1.92
256 5.05E�05 1.97 5.64E�05 1.98 8.79E�05 1.98

Fig. 6. Plots of the exact curvature and the error in curvature at the mesh points.
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derivative second-order accurate and the approximate function third-order accurate. Note that as the mesh is shrunk (or the
width is being divided by two), we translate the stencil to keep the fixed point stationary.

We now consider the cosine function (Eq. 27) on a cosine-graded mesh. The plot of the cosine function and the cosine-
graded mesh of 32 points are shown in Fig. 5. We estimate the curvature at every mesh point by linearly interpolating the
approximate curvature at the two neighboring special points (successive four-point averages) as described in Section 2 and
perform a convergence study. The error norms are defined as:



Table 9
Error in curvature at the middle special point for a uniform stencil and a nonuniform stencil involving six successive points (five successive mean values). Initial
width h ¼ 2:5.

Width Fixed point Error Order

Uniform mesh R1 ¼ R2 ¼ R3 ¼ R4 ¼ 1
h 0.0 9.43E�05 –
h=2 0.0 6.02E�06 3.97
h=4 0.0 3.78E�07 3.99
h=8 0.0 2.37E�08 4.00

Nonuniform mesh R1 ¼ 0:1;R2 ¼ 0:3;R3 ¼ 0:7;R4 ¼ 0:9
h �0.1176 1.54E�04 –
h=2 �0.1176 8.78E�06 4.13
h=4 �0.1176 5.18E�07 4.08
h=8 �0.1176 3.13E�08 4.05
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L1 ¼
P
ðjji � jexact jDxÞP

Dx
; ð32Þ

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ððji � jexactÞ2DxÞ

q
P

Dx
; ð33Þ

L1 ¼ max jji � jexact j: ð34Þ
with Dx ¼ ðxiþ1 þ xiÞ=2� ðxi þ xi�1Þ=2 for i ¼ 3; . . . ;N � 2 and where ji represents the interpolated curvature at the grid point
xi;jexact represents the exact curvature at the grid point xi and N is the total number of mesh points.

The norms of curvature errors are shown in Table 8 for both uniform and cosine-graded meshes of 32, 64, 128 and 256
points. These results demonstrate that the interpolated curvature at grid points is second-order accurate, as expected. The
curvature and the error in curvature for the 256-point uniform and cosine-graded meshes are plotted versus x in Fig. 6. Note
that the cosine-graded mesh (which is finer at maximum curvature) reduces the maximum error in curvature.

Finally, Sussman and Ohta [14] recently estimated curvature to fourth-order accuracy using five adjacent columns of a
uniform mesh instead of three. We now explain and demonstrate our extension of this to nonuniform rectangular grids.

More explicitly, ðx; f ðxÞÞ is the unknown curve, F is an indefinite integral of f, we have five successive intervals bounded by
six successive points
xi < xiþ1 < � � � < xiþ5
and we take as given the five successive integral mean values �f iþ1=2 ¼ ðDF=DxÞiþ1=2 over these intervals. For curvatures, we
need d2f=dx2 ¼ d3F=dx3, which is approximated by the third derivative of the quintic polynomial interpolating the six suc-
cessive mesh-point values of F. As such, that quadratic is Oðh3Þ accurate over the whole interval ½xi; xiþ5�. But, we want fourth-
order accuracy instead. That is associated naturally with the case k ¼ 5 of the ‘‘Reworded Remark” in Section 3, and holds
only at the three special points there. For curvatures at those points, one also needs fourth-order accurate approximations
of df=dx ¼ d2F=dx2 there. But that holds everywhere in ½xi; xiþ5� using the first derivative of the quartic Q whose five mean
values match the five mean values �f iþ1=2; . . . ;�f iþ9=2. (Alternatively, we could have evaluated the second-derivative of the New-
ton form of the quintic interpolating polynomial of the points ðxi; FðxiÞÞ5i¼0 with, say, Fðx0Þ ¼ 0.)

The results for the error in curvature are shown in Table 9 for a uniform and a nonuniform mesh using five successive
mean values. The curvature is found to be fourth-order accurate at the middle special point, as expected.

5. Conclusions

This note demonstrates both analytically and numerically that, respectively, curvatures can be computed to second-order
accuracy, first derivatives to third-order accuracy, and curve locations to fourth-order accuracy, at special points associated
locally with arbitrarily nonuniform rectangular grids, using three successive (integral) mean values (or ‘‘column” heights) as
input data. Using five successive mean values instead, fourth-order accurate curvatures are similarly associated with three
special points per six-point stencil. This note is an extension—and proof—of previous results obtained using the height func-
tion method to estimate curvatures when given volume fraction information on square grids.
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Appendix A. Justification of the special accuracy at the special points

For l ¼ 0;1;2 (and, indeed, up to k� 1), respectively, we want to indicate why the ðk� lÞth derivative of the kth degree
polynomial Pg (that interpolates the function g at the kþ 1 stencil points) has special accuracy Oðh2þlÞ at the lþ 1 special
points of Section 3. (The ordinary accuracy, Oðhlþ1Þ, holds everywhere in the stencil interval ½t0; tk� ). So, let t� be one of
the special points. We modify the justification of the original Remark there, beginning just above Eq. (18). But, for the pur-
poses of this Appendix, we assume that the origin t ¼ 0 is placed at t� (which is not necessarily �tðkþ1Þ

k=2 unless l ¼ 0). We again
involve the Maclaurin expansions Mk (Eq. 18) (about this new location) and the identity expressed in Eq. (19). Then, as
dk�lðPð�ÞÞ=dtk�l acts linearly, we conclude that (compare Eq. (20))
dk�lðPgÞ
dtk�l

ð0Þ ¼ dk�lðPMkgÞ
dtk�l

ð0Þ þ dkþ1g

dtkþ1

 !
ð0Þ �

dk�l P tkþ1

ðkþ1Þ!

h i� �
dtk�l

ð0Þ þ dk�lðPRkþ1gÞ
dtk�l

ð0Þ: ðA:1Þ
Since PðMkÞ ¼ Mk, the first term on the right of Eq. (A.1) is ðdk�lg=dtk�lÞð0Þ. The special point t�ð¼ 0Þ is either �tðkþ1Þ
k=2 (when

l ¼ 0) or one of the other special points at the end of the Reworded Remark in Section 3. So, the second factor of the second
term in Eq. (A.1) is zero. Thus,
dk�lðPgÞ
dtk�l

ðt�Þ ¼ dk�lg

dtk�l

 !
ðt�Þ þ dkþ1g

dtkþ1 ð0Þ � 0þ
dk�lðPRkþ1gÞ

dtk�l
ðt�Þ: ðA:2Þ
Since Rkþ1g is Oðhkþ2Þ, the last term is Oðhkþ2�ðk�lÞÞ ¼ Oðh2þlÞ. Thus, the Reworded Remark is justified.
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